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An extension is presented of semi-implicit methods such as the implicit continuous Eulerian 
(ICE) technique for modeling fluid flow. This new approach eliminates the material Courant 
stability limit associated with semi-implicit methods at little additional computational cost. 

I. INTR~DLJOT~~N 

During the past decade, various semi-implicit finite-difference schemes such as the 
ICE method [ I] have been used widely for solving problems in fluid flow. In many 
problems of interest, however, the stability limit on time-step size (less than the mesh 
size divided by the material velocity) associated with this class of methods is far 
smaller than is necessary for reasonable accuracy. In’ such cases the standard 
approach for cutting computational costs is to eliminate this material Courant limit 
with a fully implicit difference method; or, in multidimensional problems, employ an 
alternating direction implicit (ADI) scheme [2]. Here we present a less costly way to 
permit the use of larger time-step sizes. 

The stability-enhancing two-step (SETS) method was designed to propagate infor- 
mation needed for stability with minimal implicit coupling between spatial nodes. 
Information about pressure wave propagation is provided with a basic step, which is 
simply a semi-implicit equation set. A stabilizing step is then added to provide the 
necessary flow of information about the density, energy, and momentum being 
transported across cell boundaries. Because the stabilizing step is separated from the 
basic step, this approach has the further advantage that existing semi-implicit codes 
can be converted to the SETS method with relative ease. 

The first practical application of this method was in the field of nuclear reactor 
safety. A sample reactor calculation is presented in this paper to demonstrate the 
advantages of a reactor safery code based on SETS over one based on semi-implicit 
techniques. 

* This work was performed under the auspices of the United States Nuclear Regulatory Commission. 
The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the copyright 
covering this paper, for Government purposes, is acknowledged. 
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II. BASIC EQUATIONS 

To demonstrate the SETS method we shall consider a simplified model for one- 
dimensional single:phase flow in a straight pipe. The differential equations for this 
model are 

8peV g?i+-= aV 
8X 

-Pax’ 

and 

(1) 

(2) 

(3) 

Here K is a wall friction coefficient that may be a function of velocity and fluid 
properties. 

The spatial mesh used for the finite-difference equations is staggered, with ther- 
modynamic properties evaluated at the cell centers and the velocity evaluated at the 
cell edges. To ensure stability and maintain consistency with differencing in existing 
reactor safety codes [3], flux terms at cell edges use donor cell averages of the form 

(yv)j+l/*= yjvj+l/*, vj+l/*>” 

= yj+l vj+lp.9 vj+1/* co* (4) 

Other forms of this average may maintain stability with higher-order spatial accuracy 
but they have not been studied carefully. With this notation the one-dimensional 
finite-difference divergence operator is 

'j ' tyv) = t(yv>j+ l/2 - Cyv>j- l,,?YAxj, (5) 

and term V V V becomes 

V j+ 1/2Vj+1/2 V= Vj+ l/*(Vj+ 112 - Vj-1/2)IAXj+ l/2, Vj+ l/2 2 0 

= Vj+ */2(Vj+3/2 - Vj+ l/z)/AXj+ l/2, Vj+ l/l < 0, (6) 

where Axj+ ,,2 = 0.5 (Axj + Axi+,). This choice of Axj+,,, for Eq. (6) rather than one 
obtained from a donor cell average was found necessary for more accurate 
calculation of pressure drops in pipes modeled with a nonuniform mesh. 

For the flow model given by Eqs. (l)-(3), the combination of basic and stabilizer 
equation sets can be written in a number of ways without significantly affecting the 
results of calculations. For example, the stabilizer step may precede the basic step for 
all equations, or the basic step may be done before the stabilizer step. When the 
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SETS method is adapted to the two-fluid model for two-phase flow, it has been found 
that several orderings of the difference equations can cause growing oscillations due 
to feedback through interfacial friction terms. One ordering that is always stable 
begins with the stabilizer step for the equations of motion, is followed by a solution 
of the basic equation set for all equations, and ends with a stabilizer step for the mass 
and energy equations. For this ordering the SETS finite-difference equations for Eqs. 
(l)-(3) are: 

Stabilizer Equation of Motion 

<q:l’,2 - ‘j”+ 1/2)lAt + ‘j”+ I/Z’/+ l/2 p+’ + Ptvy’jn++l’/2 - vy+ l/2) vj+ l/2 p” 

1 
+ @3i”+ ,,* Axj+,,, w+ 1-m + KY+ 1/*(2~%‘,2 - vi”+ ,,2) I v;+ ,,*I = 0, (7) 

where 
P=OY vj+l/2P < 0 

= 
'9 'j+l/* P > 0; 

Basic Equations 

(‘Y:l’/* - V~+l12)/At + v~+1/*vj+1/2 P+’ + p(Vy,‘:,* - Vy+ ,,*) Vi+ l,z P 

+ Go)” ,+,,21,,jq+ ,,* (@;,‘I’ -$+ ‘I+ K;+ &~;:I$ - V;+ 1,~) 1 V;+ ,,z( = 0; (8) 

(jr;+’ -p,“)/At + vj * (pv+‘> = 0; (9) 
@jl+lg;+l -#ej”)/flt + Vi. @“e”V”+l) +#+‘Vj . (If”+‘) =O; (10) 

and 

Stabilizer Mass and Energy Equations 

(p;+’ +)/At + Vj . @“+lV”+l) = 0; (11) 
(p;+‘ey+’ -&,$)/At + Vj. @n+‘e”+lVn+l) +fiyi”“Vj. (V”“) = 0. (12) 

A tilde above a variable indicates that it is the result of an intermediate step and not 
the final value for the time step. An overbar indicates a 50% average between its 
values at adjacent cells. 

The material Courant stability limit is eliminated by treatment of the terms VVV, 
V . pV, and V . peV during the two steps. These are the terms involved in the infor- 
mation propagation that was discussed in the Introduction. Additional robustness has 
been obtained with the peculiar form of the friction terms and the use of nonzero 
values of p in the VVV terms. These special terms for friction and VVV are obtained 
by linearizing similar terms that are fully implicit in velocity (KY, ,,* VT,‘,& 1 V;,‘$I 
and Vi”+‘,& Vi+ 1,2 V”’ ‘). 
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Equation (7) simply represents a tridiagonal linear system in the unknown p” 
and is solved first. Next, the coupled nonlinear system given by Eqs. (8)-(10) is 
solved. To accomplish this, Eq. (8) is rearranged to obtain V”+ i as a linear function 
of the new time pressures. This relation is substituted into Eqs. (9) and (lo), along 
with thermodynamic relations that give density and energy as functions of pressure 
and temperature. The resulting pair of nonlinear vector equations is solved by 
Newton iteration for all new time pressures and temperatures. Simple algebraic 
manipulations can reduce the linear system that must be solved in this iteration to a 
tridiagonal system with the variation in jY+i as the unknown. Once these equations 
are solved, P’” + i is known and hence both Eqs. (11) and (12) are simple tridiagonal 
linear systems, with unknowns of+ ’ and py’ ‘ey+ ‘, respectively. 

When this equation set is adapted to flow in complex piping networks, the pure 
tridiagonal structure is lost. The matrices, however, are still sparse and easily solved 
(see ]31). 

The stability expected for these equations based on information flow arguments has 
been verified by a large number of computational test problems. When the friction 
factor (K) is a constant, we have not found any test problems that exhibit 
instabilities. At very large time steps, however, functional forms for the friction factor 
containing too much old time velocity dependence can drive instabilities. This is why 
the method is referred to as stability enhancing rather than unconditionally stable. 

Because the basic form of the finite-difference operators (both spatial and 
temporal) is consistent between the two steps, the order of accuracy of the full SETS 
equations is the same (first order in space and time) as the basic semi-implicit 
equations (8~(10). This consistency appears necessary to prevent the development of 
feedback oscillations between the two steps. It has the advantage of ensuring that, for 
small enough time steps, the results of any SETS calculation will approach those of 
the basic semi-implicit equations. 

Some variations on this method are possible and perhaps even desirable for certain 
problems. For this specific pipe flow model, Eq. (7) can be eliminated and pt ’ 
replaced by V”+ ’ in Eq. (8). With the proper solution procedure for Eqs. (8~(lo), 
this change will reduce computation costs. This variation, however, does not 
generalize well to multiphase flow equations with more than one equation of motion 
or to calculations in two or three dimensions, because the bandwidth of some 
matrices is increased. In some instances the more traditional ICE coupling of mass 
and motion equations could be used to replace Eqs. (8) and (9) and to eliminate Eq. 
(10) in favor of a temperature constraint, but the strong implicit coupling of the 
energy equation expressed by Eq. (10) is important in systems with reactions or 
phase change (see Liles and Reed [4]). 

We have found the SETS method particularly valuable when applied to the two- 
fluid model of two-phase flow used in modeling nuclear reactor transients. For this 
model the stabilizer equations add less than 20% to the computational cost per cell 
per step of the basic equation set. A fully implicit method multiplies this cost by a 
factor of 6. The application of the method to these equations is described in 15-71. 
Because these references are not widely available, the difference equations described 
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in [6] and [ 71 have been included in the Appendix. In these references an interesting 
variation on the finite-difference divergence operator was described that is superior in 
regions of rapid phase change to the one given here. The form of the VVV term also 
was different in [5], but the one given here in Eqs. (7) and (10) has proved to be 
superior. 

III. SAMPLE CALCULATION 

The SETS method currently is available in TRAC-PFl, a best-estimate computer 
code for calculating loss-of-coolant accidents in nuclear reactors. TRAC-PFl is 
described in detail in [6] and [7] and has been released to the National Energy 
Software Center at Argonne. The finite-difference equations used are a direct 
generalization of Eqs. (7)-( 12) to the two-fluid model of two-phase flow and are iden- 
tical to those equations in the limit of single-phase flow with no heat transfer. The 
sample calculation presented here uses this code to model a reactor accident similar 
to the one that occurred at Three Mile Island. During this hypothetical accident the 
reactor depressurized and voided due to flow through a pressure relief valve that 
jammed open. 

The reactor system is represented with 80 spatial nodes. Throughout most of the 
system it is possible to use mesh lengths of a meter or more because of the small 
spatial gradients of all physical variables. In the pressure relief valve, however, these 
gradients are always large, and mesh lengths of a centimeter are required to model 
the choked flow accurately. 

Figures 1 and 2 present the calculated pressure and fraction of water in the vapor 

r-----l 
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FIG. 1. System pressure vs time for a hypothetical nuclear reactor accident. 



334 JOHN H. MAHAFFY 

0.6 I I I I I I 

0.5 - 

8 0.4- 
i= 

:: 
E 0.3 - 

8 
!$ 0.2- 
> 

0.1 - 

0.0 - 
0 1000 2000 3000 4000 5000 6000 7000 

TIME (s) 

FIG. 2. Volume fraction occupied by steam near the top of the reactor core. 

phase for a cell near the top of the reactor core. Unlike the actual incident at Three 
Mile Island, this accident scenario involved injection of enough coolant after 5000 s 
to prevent overheating of the nuclear rods. For our purpose, the most important 
feature of these results is the relatively slow rate of change of system conditions. This 
means that fairly large time-step sizes can be taken without affecting the accuracy of 
the calculations. During the base run of this problem, the time-step size was typically 
3-6 s. Given the fluid velocities in the system for time steps in this range, the material 
Courant stability limit was exceeded by factors of 100,000 in the relief valve and by 
10 to 20 in the main reactor loops, without producing numerical instabilities. 

To check for errors induced by time-step size, a second run was made with the 
time steps forced to half the size of the preceding run. The curves corresponding to 
Figs. 1 and 2 overlaid the original results and the values matched closely for all other 
state variables in the system. This comparison indicates that errors due to time-step 
size were not significant and, hence, the results of the SETS code were very close to 
what would have been calculated by a semi-implicit code with the same spatial 
difference method. Similarly, good comparisons have been found for a number of 
simpler problems that were run both with SETS and with an equivalent semi-implicit 
code (see e.g., [5]). 

No studies were made of errors due to spatial discretization because the SETS 
method was intended simply to improve stability of an existing finite-difference 
scheme without improving the order of accuracy. Possible adaptations of SETS to 
higher order methods will be studied in the future. 

Because of the severe time-step restriction in the relief valve, no standard semi- 
implicit code could run efficiently on this problem with the spatial mesh that we used. 
Even if special treatment were given to the valve, such a code would be an order of 
magnitude slower than the SETS code due to the stability limit in the reactor loops. 
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IV. CONCLUSION 

The SETS approach has proved to be a very flexible and efficient way to improve 
the stability of fluid flow calculations. The method is now beyond the demonstration 
phase and currently is being used for a wide range of nuclear reactor safety 
calculations. Most work thus far has been on adapting it to the one-dimensional two- 
phase flow equations used in modeling these reactor transients. However, work is 
under way at Los Alamos to adapt the method to a three-dimensional flow code. In 
the future this approach should prove extremely useful for diverse problems in 
combustion, multiphase, and reacting flow. 

APPENDIX: SETS IN TRAC-PFI 

The SETS method has been applied successfully to the modeling of two-phase flow 
in TRAC-PFl [7]. In this code a three-component two-fluid model is described by 
seven differential equations. 

Liquid Mass Equation 

au -alp, 
at + v * [(I - cf)p,V,] = -I-. 

Combined Vapor Mass Equation 

Wp,) at + v * (ap,V,) = r. 

Noncondensable Gas Mass Equation 

at + V . (ap,V,> = 0. 

(AlI 

642) 

643) 

Combined Vapor Equation of Motion 

8V 
~fVg*VVg (A41 

Liquid Equation of Motion 

%+v,.vv,= 
(12x)p, &,--v,)lv,+~~P 

- (1 ?A),, v, IV,1 + g* GW 
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Combined Vapor Energy Equation 

i (wgeg) + V - (w,e,V,) 

=-p~-pV'(aV,)+q,,+qi,+Th,,, 

Total Energy Equation 

a[(1 - a)p,e, + wge,l 
at 

+ v - [(l - a)p,e,V, + q&C,1 

=-pV. [(l-a) VI+aV,l+q,~+qwg- 

646) 

647) 

The subscript g denotes the combined vapor field and 1, the liquid field. A subscript 
a is used for the noncondensable gas because that component generally is used to 
model air. 

In these equations the microscopic vapor densities and energies are sums of the 
steam and noncondensable components 

Pg=PS+& W) 
and 

Pge, =w, +wa. 649) 
The average volume fraction of vapor (a) is used to obtain macroscopic densities and 
energies. We assume Dalton’s law applies; therefore, 

P=Ps+Pa* (A 10) 

In addition to the thermodynamic relations that are required for closure, 
specifications for the interfacial drag coefficients (ci), the interfacial heat transfer 
(q,&, the phase-change rate (ZJ, the wall shear coefficients (c,,,~ and c,,), and the wall 
heat transfers (q,* and qw,) are required. Gamma is evaluated from a simple thermal 
energy jump relation, 

I-= - qig - 4i/ 

hs, - h,, ’ 
(All) 

where 

qig = higA i P’s, - T,> 
vol 6412) 

and 
q,, = h,,A, (Ts;i T’) . W3) 

Here A, and the h, terms are the interfacial area and heat-transfer coefftcients and 
T,, is the saturation temperature corresponding to the partial steam pressure. 
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Wall heat-transfer terms assume the form 

and 
qw,= h,,A,, (T’“-lT,), 

(A141 

(Al51 

where A,, and A,, are the actual heated surface areas of the cell. 
When the SETS method is applied to this model, the first change from the 

simplified equations in Section II occurs in the definition of the finite-difference 
divergence operator (Eq. (5)). In TRAC-PFl this operator is formulated to allow 
modeling of pipes with nonuniform cross-sectional areas: 

V.. (Yv>= (Aj+~I*(YV)j+1,2-Aj-~,*(YV)j-~,*) 
J VOlj 7 

where A is the local cross-sectional area and volj is the volume of the jth cell. 
The most significant change in SETS when it is adapted to a two-fluid model is the 

addition of predictor motion equations for the liquid and vapor: 

(CBn+l- V,“) 
At + v~vj+l,*~++(~+‘-V~)Vj+1,2~ 

6 
+ (ap,);+1,2 

[2@,"+'- et')-(v;-vv;)]Iv;-vv;I 

1 <P.L 1 -P,“) + ?g 

+ C&$+1,* ‘xi+W (~PExt l/2 

(2C'+' -v,")p~I+gcose=o, (A171 

where 

B= 0, if vj+ l/2 Vn Q 0; 

= 1, if vj+ ii2 V” > 0. 

(p;” - v;) 
At + v~vj+~,2~+~(~+1-V~)Vj+~,2~ 

n 

+ I(1 -afiP,l;+,,, 
[2(@';+ -q"'>-(v;-v,")]Iv;-vyI 

-n+1 
+ I(1 - ~;;,lzl,2 (2v/ - v~)Iv;I+gcose=o. G-418) 
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These two equations are used simply to provide a better interfacial drag force term in 
the stabilizer motion equations. When they are excluded, undamped numerical 
oscillations can occur. 

The remaining difference equations are a straightforward generalization of Eqs. 
(7N2). 

Stabilizer Equations of Motion 

(C’“-c> +f,plV 9”+‘+p(p+lq,7n)v, 
g jt l/2 g B 8 

$3 

At Jt1/2 g 

c; 

+ GQ;+ I,2 

[2(e+’ - vy)-(V;-V~)])V;-V~l 

1 (Pj”, 1 -Pi”) + -Gvg 

+ @B)jn+lp AXjtl12 (apex+ l/2 

(2c+’ - v~)Iv~I+gcose=o. (A191 

(C’;“-v +jpv, p+‘+p(q+l-p)v, p 

At / JtIf2 1 Jt1/2 / 

Cl 

+ I(1 - a) PA;+ I,2 

[2(fl+’ - 

1 (Pi”, I -Pi”> 
+ @I)jn+1,2 Axj+l/2 

+ I(1 - GJ,,, I/Z 
(2vy’ - v~))v;J+gcose=o. NO) 

Basic Equations of Motion 

4 [2(v;+l 

+ G&+1,2 

-vf+‘)-(v;-v;)]Iv;-vv;I 

1 

+ @,>.Yt 112 

(IT;; -Jy) cwg 

Axj+ 112 + (aP,)y+ ,,2 
(2v;+' - v~)Iv~I+gcose=o. 

6421) 

VT+'-v +vnv 
1 

pt'+p(v~t'-v~)v, 
jtll2 I 

p 

At Jtll2 / 

C; 

+ [Cl - a> Plljnt1,2 
[2(V;+’ - v;“)-(v~-v;)]Iv;-v;I 



t

n+1 

+ [(l -g,,;+,,, (2vJ 
-v~)~v~~+gcose=o. (A22) 

Basic Mass Equations 

K&$1”+’ - (aPg)“l 
At 

+vj* (ap,V;+‘)=P+‘. (~23) 

KGa)“’ ’ - hJ”l 
At 

+vj. (czp,v;+‘)=o. 6424) 

[(l-~)“+lp’;+‘--l--)“p~l +V.. [(l-a)p Vfl+‘]=-,I+‘. 
At J I I 

(A29 

Basic Energy Equations 

[(6&e”,)“+’ - (ap,e,>“l 
At 

+vj* (ap,e,Vi+‘) 

+,-,+I 
[ 

(p+’ -a”) 

At 
+ vi. (a”V,““) 1 = 6;;’ + t;;*+ p+‘,-;‘. 

{[Z~gifg+(l-&)P;C,]“+l- a e At 1 Pg g + (1 - 4w,l”l 

+ vj * [(ap,e,) V:+’ + (1 - a)p,e,V;+‘] 

+p’“+’ vj. [(l-a)” .;+1+..v,“+‘]=p~z:‘+4”~:‘. 

6426) 

(A27) 

Stabilizing Mass Equations 

lGvJ+’ - (ap,)” I 
At 

+ vj - [(cfp,)“” v;“] =Pn+l. 

[(aPa)“’ ’ - (aPrY 
At 

+ vj * [(ap,)“” I$+‘] = 0. 

[(1-~)“+‘p~+‘--~--a)“p:l +v,. [(,~~),+lp,+l,fl+l]~~~+l 

At J 1 I 

WW 

W9) 

6430) 
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Stabilizing Energy Equations 

I(w,e,Y+’ - (w,e,Yl 
At 

+ Vj. [(ap,e,)“+’ V:“] 

+,-,+I 
[ 

(En+’ -a”) 

At 
+Vj. (a”~~+l)]=~~s+l++~~l+~+‘~B+‘~ (A31) 

I[(1 - a)w31nt1 - I(1 - a)b+e,l”I 
At 

+ Vj - {[(l - a)p,e,]“+’ V;l+‘} 

+F+’ 
I 

(a” -,,+I) 

At 
+Vj. [(l-a)“V;+i] =q;;l-$g+l-P+l&+l. (~32) 

I 

A caret above velocities denotes explicit predictor values. If there are no subscripts 
denoting cell location, we assume subscript j for mass and energy equations and 
subscript j + f for equations of motion. Finally, theta is the angle between a vector 
from the center of cell j to the center of cell j + 1 and a vector against gravity. 

Time levels were omitted from some flux terms in Eqs. (38)-(42) because these 
terms contain both old and new time quantities. If X is a combination of state 
variables without a time superscript, then the correct definition for the divergence 
term in which it appears is 

vj(xvi"+l)= iAj+l/2 vin++l:/2[fj+1/2xjm + C1-fj+,,2)X~+lI 

-A. J-1/2 vi"-+ll/2[f;.-l/2xjn_l + (l -.4-~/2)xjm]J/vo1jv (A33) 

where 

xi” =g’X” + (1 -g’)XY”‘. (A34) 

The weighting function used to obtain donor-cell averaging (Eq. (4)) is f and g’ is a 
weighting factor that depends on the rate of phase change, which goes to unity as the 
phase change disappears and to zero as the phase change approaches the total 
outflow of the phase created in the cell. For nonzero g’, this form of the divergence 
operator is nonconservative but total conservation is maintained by the stabilizer 
step. 

The solution of the finite-difference equations is a direct generalization of the 
method described for the simplified equations. There is no coupling between stabilizer 
equations for different fields, so each is solved exactly like its counterpart in Section 
II. The reduced form of the basic equation set is combined with the appropriate ther- 
modynamic relations and solved for the unknowns j”’ ‘, ZI’ ‘, c’ ‘, ct ‘, and a’“’ ‘. 

ACKNOWLEDGMENT 

This work was sponsored by the United States Nuclear Regulatory Commission. 



THE SETS METHOD FOR FLUID FLOW 341 

REFERENCES 

1. F. H. HARLOW AND A. A. AMSDEN, J. Comput. Phys. 8 (1971), 197. 
2. J. DOUGLAS AND H. H. RACHFORD, Trans. Amer. Math. Sot. 82 (1956), 421. 
3. “TRAC-PDZ: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Loss- 

of-Coolant Accident Analysis,” Los Alamos National Lab. Rep. LA-8709-M& NUREG/CR-2054 
(1981). 

4. D. R. LILES AND W. H. REED, J. Comput. Phys. 26 (1978) 390. 
5. J. H. MAHAFFY, “A Stability Enhancing Two-Step Method for One-Dimensional Two-Phase Flow,” 

Los Alamos Scientific Lab. Rep. LA-7951-M& NUREG/CRa971 (1979). 
6. J. H. MAHAFFY, D. R. LILES, AND T. F. Barr, TRAC Methods and Models, “Proceedings, American 

Nuclear Society Specialists Meeting on Small Break Loss-of-Coolant Accident Analyses in LWRs,” 
Electric Power Research Inst. Rep. WS-81-201 (1981). 

7. “TRAC-PFl: A Fast Running Advanced Best-Estimate Computer Program for PWR LOCA 
Analysis,” Los Alamos National Lab. Rep., to be published. 


